vi Editor Pocket Reference

Table of Contents

SPECIAL OFFER: Upgrade this ebook with O’Reilly
1. vi Editor Pocket Reference
Introduction
Conventions
1.1. Command-Line Options
1.2. vi Commands
1.2.1. Movement Commands
1.2.2. Editing Commands
1.2.3. Exit Commands
1.2.4. Solaris vi Command-Mode Tag Commands
1.2.5. Buffer Names
1.2.6. Buffer and Marking Commands
1.3. Input Mode Shortcuts
1.3.1. Word Abbreviation
1.3.2. Command and Input Mode Maps
1.3.3. Executable Buffers
1.3.4. Automatic Indentation
1.4. Substitution and Regular Expressions
1.4.1. The Substitute Command
1.4.2. vi Regular Expressions
1.4.3. POSIX Bracket Expressions
1.4.4. Metacharacters Used in Replacement Strings
1.4.5. More Substitution Tricks
1.5. ex Commands
1.5.1. Command Syntax
1.5.2. Address Symbols
1.5.3. Command Option Symbols
1.5.4. Alphabetical List of Commands
1.6. Initialization and Recovery
1.6.1. Initialization
1.6.2. Recovery
1.7. vi Options
1.8. Enhanced Tags and Tag Stacks
1.8.1. Exuberant ctags
1.8.2. Solaris 2.6 vi Tag Stacking
1.9. nvi—New vi
1.9.1. Important Command-Line Arguments
1.9.2. nvi Window Management Commands
1.9.3. Extended Regular Expressions
1.9.4. Command-Line History and Completion Options
1.9.5. Tag Stacks
1.9.6. nvi 1.79 Additional Set Options
1.10. elvis
1.10.1. Important Command-Line Arguments
1.10.2. elvis Window Management Commands
1.10.3. Extended Regular Expressions
1.10.4. Command-Line History and Completion Movement Keys
1.10.5. Tag Stacks
1.10.6. Edit-Compile Speedup
1.10.7. elvis 2.0 Set Options
1.11. vim—vi Improved
1.11.1. Important Command-Line Arguments
1.11.2. vim Window Management Commands
1.11.3. Extended Regular Expressions
1.11.4. Command-Line History and Completion
1.11.5. Tag Stacks
1.11.6. Edit-Compile Speedup
1.11.7. Programming Assistance
1.11.8. vim 5.1 Set Options
1.12. vile—vi Like Emacs
1.12.1. Important Command-Line Arguments
1.12.2. vile Window Management Commands
1.12.3. Extended Regular Expressions
1.12.4. Command-Line History and Completion
1.12.5. Tag Stacks
1.12.6. Edit-Compile Speedup
1.12.7. vile 8.0 Set Options
1.13. Clone Source and Contact Information
SPECIAL OFFER: Upgrade this ebook with O’Reilly

vi Editor Pocket Reference

Arnold Robbins

Editor

Gigi Estabrook

Copyright © 2009 O'Reilly Media, Inc.

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!

Chapter 1. vi Editor Pocket Reference

This pocket reference is a companion to Learning the vi Editor, by Linda Lamb and Arnold Robbins. It describes the vi command-line options, command mode commands, ex commands and options, regular expressions and the use of the substitute (s) command, and other pertinent information for using vi. Also covered are the additional features in the four vi clones, nvi, elvis, vim, and vile.

The Solaris 2.6 version of vi served as the “reference” version of vi for this pocket reference.

The following font conventions are used in this book:

Courier
Used for command names, options, and everything to be typed literally
Courier Italic
Used for replaceable text within commands
Italic
Used for replaceable text within regular text, program names, filenames, paths, for emphasis, and new terms when first defined
[…]
Identifies optional text; the brackets are not typed
CTRL-G
Indicates a keystroke

Command-Line Options

CommandAction
vi file

Invoke vi on file

vi file1 file2

Invoke vi on files sequentially

view file

Invoke vi on file in read-only mode

vi -R file

Invoke vi on file in read-only mode

vi -r file

Recover file and recent edits after a crash

vi -t tag

Look up tag and start editing at its definition

vi -w n

Set the window size to n; useful over a slow connection

vi + file

Open file at last line

vi +n file

Open file directly at line number n

vi -c command file

Open file, execute command, which is usually a search command or line number (POSIX)

vi +/pattern file

Open file directly at pattern

ex file

Invoke ex on file

ex - file < script

Invoke ex on file, taking commands from script; suppress informative messages and prompts

ex -s file < script

Invoke ex on file, taking commands from script; suppress informative messages and prompts (POSIX)

vi Commands

Most vi commands follow a general pattern:

[command][number]textobject

or the equivalent form:

[number][command]textobject
CommandMeaning
Character
h, j, k, l

Left, down, up, right (, , ,)

Text
w, W, b, B

Forward, backward by word

e, E

End of word

), (

Beginning of next, previous sentence

}, {

Beginning of next, previous paragraph

]], [[

Beginning of next, previous section

Lines
RETURN

First nonblank character of next line

0, $

First, last position of current line

^

First nonblank character of current line

+, -

First nonblank character of next, previous line

n|

Column n of current line

H

Top line of screen

M

Middle line of screen

L

Last line of screen

nH

n (number) of lines after top line

nL

n (number) of lines before last line

Scrolling
CTRL-F, CTRL-B

Scroll forward, backward one screen

CTRL-D, CTRL-U

Scroll down, up one-half screen

CTRL-E, CTRL-Y

Show one more line at bottom, top of window

z RETURN

Reposition line with cursor: to top of screen

z.

Reposition line with cursor: to middle of screen

z

Reposition line with cursor: to bottom of screen

CTRL-L

Redraw screen (without scrolling)

Searches
/pattern

Search forward for pattern

?pattern

Search backward for pattern

n, N

Repeat last search in same, opposite direction

/, ?

Repeat previous search forward, backward

fx

Search forward for character x in current line

Fx

Search backward for character x in current line

tx

Search forward to character before x in current line

Tx

Search backward to character after x in current line

;

Repeat previous current-line search

,

Repeat previous current-line search in opposite direction

Line number
CTRL-G

Display current line number

nG

Move to line number n

G

Move to last line in file

:n

Move to line n in file

Marking position
mx

Mark current position as x

x

Move cursor to mark x

‘‘

Return to previous mark or context

x

Move to beginning of line containing mark x

Return to beginning of line containing previous mark

CommandAction
Insert
i, a

Insert text before, after cursor

I, A

Insert text before beginning, after end of line

o, O

Open new line for text below, above cursor

Change
r

Replace character

cw

Change word

cc

Change current line

cmotion

Change text between the cursor and the target of motion

C

Change to end of line

R

Type over (overwrite) characters

s

Substitute: delete character and insert new text

S

Substitute: delete current line and insert new text

Delete, move
x

Delete character under cursor

X

Delete character before cursor

dw

Delete word

dd

Delete current line

dmotion

Delete text between the cursor and the target of motion

D

Delete to end of line

p, P

Put deleted text after, before cursor

"np

Put text from delete buffer number n after cursor (for last nine deletions)

Yank
yw

Yank (copy) word

yy

Yank current line

"ayy

Yank current line into named buffer a (a–z). Uppercase names append text

ymotion

Yank text between the cursor and the target of motion

p, P

Put yanked text after, before cursor

"aP

Put text from buffer a before cursor (a–z)

Other commands

.

Repeat last edit command

u, U

Undo last edit; restore current line

J

Join two lines

ex edit commands

:d

Delete lines

:m

Move lines

:co or :t

Copy lines

:.,$d

Delete from current line to end of file

:30,60m0

Move lines 30 through 60 to top of file

:.,/pattern/co$

Copy from current line through line containing pattern to end of file

Command

Meaning

ZZ

Write (save) and quit file

:x

Write (save) and quit file

:wq

Write (save) and quit file

:w

Write (save) file

:w!

Write (save) file, overriding protection

:30,60w newfile

Write from line 30 through line 60 as newfile

:30,60w>> file

Write from line 30 through line 60 and append to file

:w %.new

Write current buffer named file as file.new

:q

Quit file

:q!

Quit file, overriding protection

Q

Quit vi and invoke ex

:e file2

Edit file2 without leaving vi

:n

Edit next file

:e!

Return to version of current file at time of last write (save)

:e #

Edit alternate file

:vi

Invoke vi editor from ex

:

Invoke one ex command from vi editor

%

Current filename (substitutes into ex command line)

#

Alternate filename (substitutes into ex command line)

Command

Action

^]

Look up the location of the identifier under the cursor in the tags file and move to that location; if tag stacking is enabled, the current location is automatically pushed onto the tag stack

^T

Return to the previous location in the tag stack, i.e., pop off one element

Buffer Names

Buffer Use

1–9

The last nine deletions, from most to least recent

a–z

Named buffers to use as needed; uppercase letters append to the buffer

Command

Meaning

"bcommand

Do command with buffer b

mx

Mark current position with x

'x

Move cursor to first character of line marked by x

`x

Move cursor to character marked by x

``

Return to exact position of previous mark or context

''

Return to beginning of the line of previous mark or context

:ab abbr phrase
Define abbr as an abbreviation for phrase.
:unab abbr
Remove definition of abbr.

Be careful with abbreviation texts that either end with the abbreviation name or contain the abbreviation name in the middle.

:map x sequence
Define character(s) x as a sequence of editing commands.
:unmap x
Disable the sequence defined for x.
:map
List the characters that are currently mapped.
:map! x sequence
Define character(s) x as a sequence of editing commands or text that will be recognized in input mode.
:unmap! x
Disable the sequence defined for the input mode map x.
:map!
List the characters that are currently mapped for interpretation in insert mode.

For both command and input mode maps, the map name x can take several forms:

One character
When you type the character, vi executes the associated sequence of commands.
Multiple characters
All the characters must be typed within one second. The value of notimeout changes the behavior.
#n
Function key notation: a # followed by a digit n represents the sequence of characters sent by the terminal’s function key number n.

To enter characters such as Escape (^[) or carriage return (^M), first type a CTRL-V (^V).

Named buffers provide yet another way to create “macros”—complex command sequences you can repeat with a few keystrokes. Here's how it's done:

 1. Type a vi command sequence or an ex command preceded by a colon; return to command mode.
 2. Delete the text into a named buffer.
 3. Execute the buffer with the @ command followed by the buffer letter.

The ex command :@buf-name works similarly.

Some versions treat * identically to @ when used from the ex command line. In addition, if the buffer character supplied after the @ or * commands is *, the command is taken from the default (unnamed) buffer.

You enable automatic indentation with the command:

:set autoindent

Four special input sequences affect automatic indentation:

^T
Add one level of indentation; typed in insert mode
^D
Remove one level of indentation; typed in insert mode
^ ^D
Shift the cursor back to the beginning of the line, but only for the current line[1]
0 ^D
Shift the cursor back to the beginning of the line and reset the current auto-indent level to zero[2]

Two commands can be used for shifting source code:

<<
Shift a line left eight spaces
>>
Shift a line right eight spaces

The default shift is the value of shiftwidth, usually eight spaces.

[1] ^ ^D and 0 ^D are not in elvis 2.0.

[2] The nvi 1.79 documentation has these two commands switched, but the program actually behaves as described here.

The general form of the substitute command is:

:[addr1[,addr2]]s/old/new/[flags]

Omitting the search pattern (:s//replacement/) uses the last search or substitution regular expression.

An empty replacement part (:s/pattern//) “replaces” the matched text with nothing, effectively deleting it from the line.

.
Matches any single character except a newline. Remember that spaces are treated as characters.
*
Matches zero or more (as many as there are) of the single character that immediately precedes it. The * can follow a metacharacter, such as . or a range in brackets.
^
When used at the start of a regular expression, ^ requires that the following regular expression be found at the beginning of the line. When not at the beginning of a regular expression, ^ stands for itself.
$
When used at the end of a regular expression, $ requires that the preceding regular expression be found at the end of the line. When not at the end of a regular expression, $ stands for itself.
\
Treats the following special character as an ordinary character. (Use \\ to get a literal backslash.)
[]
Matches any one of the characters enclosed between the brackets. A range of consecutive characters can be specified by separating the first and last characters in the range with a hyphen. You can include more than one range inside brackets and specify a mix of ranges and separate characters. Most metacharacters lose their special meaning inside brackets, so you don’t need to escape them if you want to use them as ordinary characters. Within brackets, the three metacharacters you still need to escape are \ -]. (The hyphen (-) acquires meaning as a range specifier; to use an actual hyphen, you can also place it as the first character inside the brackets.) A caret (^) has special meaning only when it's the first character inside the brackets, but in this case, the meaning differs from that of the normal ^ metacharacter. As the first character within brackets, a ^ reverses their sense: the brackets match any one character not in the list. For example, [^a-z] matches any character that's not a lowercase letter.
\(\)
Saves the pattern enclosed between \(and \) into a special holding space or “hold buffer.” Up to nine patterns can be saved in this way on a single line. You can also use the \n notation within a search or substitute string:
:s/\(abcd\)\1/alphabet-soup/
changes abcdabcd into alphabet-soup.[
3]
\< \>
Matches characters at the beginning (\<) or end (\>) of a word. The end or beginning of a word is determined either by a punctuation mark or by a space. Unlike \(…\), these don't have to be used in matched pairs.
~
Matches whatever regular expression was used in the last search.

POSIX bracket expressions may contain the following:

Character classes
A POSIX character class consists of keywords bracketed by [: and :]. The keywords describe different classes of characters such as alphabetic characters, control characters, and so on (see the following table).
Collating symbols
A collating symbol is a multicharacter sequence that should be treated as a unit. It consists of the characters bracketed by [. and .].
Equivalence classes
An equivalence class lists a set of characters that should be considered equivalent, such as e and è. It consists of a named element from the locale, bracketed by [= and =].

All three constructs must appear inside the square brackets of a bracket expression.

\n
Is replaced with the text matched by the nth pattern previously saved by \(and \), where n is a number from 1 to 9, and previously saved patterns (kept in hold buffers) are counted from the left on the line.
\
Treats the following special character as an ordinary character. To specify a real backslash, type two in a row (\\).
&
Is replaced with the entire text matched by the search pattern when used in a replacement string. This is useful when you want to avoid retyping text.
~
The string found is replaced with the replacement text specified in the last substitute command. This is useful for repeating an edit.
\u or \l
Changes the next character in the replacement string to upper- or lowercase, respectively.
\U or \L and \e or \E
\U and \L are similar to \u or \l, but all following characters are converted to upper- or lowercase until the end of the replacement string or until \e or \E is reached. If there is no \e or \E, all characters of the replacement text are affected by the \U or \L.
 • You can instruct vi to ignore case by typing :set ic.
 • A simple :s is the same as :s//~/.
 • :& is the same as :s. You can follow the & with a g to make the substitution globally on the line, and even use it with a line range.
 • The & key can be used as a vi command to perform the :& command, i.e., to repeat the last substitution.
 • The :~ command is similar to the :& command, but with a subtle difference. The search pattern used is the last regular expression used in any command, not necessarily the one used in the last substitute command.
 • Besides the / character, you may use any nonalphanumeric, nonwhitespace character as your delimiter, except backslash, double-quote, and the vertical bar (\, ", and |).
 • When the edcompatible option is enabled, vi remembers the flags (g for global and c for confirmation) used on the last substitute and applies them to the next one.

[3] This works with vi, nvi, and vim, but not with elvis 2.0, vile 7.4, or vile 8.0.

Full Name Command
Abbrev

ab [string text]

Append

[address]a[!] text

.

Args

ar

Change

[address] c[!] text

.

Copy

[address] co destination

Delete

[address] d [buffer]

Edit

e [!][+n] [filename]

File

f [filename]

Global

[address]g[!]/pattern/[commands]

Insert

[address]i[!]

text

.

Join

[address]j[!][count]

K (mark)

[address] k char

List

[address] l [count]

Map

map char commands

Mark

[address] ma char

Move

[address] m destination

Next

n[!] [[+command] filelist]

Number

[address] nu [count]

Open

[address] o [/pattern/]

Preserve

pre

Print

[address] p [count] [address] P [count]

Put

[address] pu [char]

Quit

q[!]

Read

[address] r filename

Read

[address] r ! command

Recover

rec [filename]

Rewind

rew[!]

Set

set

set option

set nooption

6set option=value

set option?

Shell

sh

Source

so filename

Substitute

[addr] s [/pat/repl/][opts]

T (to)

[address]t destination

Tag

[address] ta tag

Unabbreviate

una word

Undo

u

Unmap

unm char

V (global exclude)

[address] v/pattern/[commands]

Version

ve

Visual

[address] vi [type] [count]

Visual

vi [+n] [filename]

Write

[address] w[!] [[>>]filename]

Write

[address] w !command

Wq (write + quit)

wq[!]

Xit

x

Yank

[address] y [char] [count]

Z (position line)

[address] z[type] [count]

type can be one of:

+
Place line at the top of the window (default)
-
Place line at bottom of the window
.
Place line in the center of the window
^
Print the previous window
=
Place line in the center of the window and leave the current line at thisline
!

[address] !command

= (line number)

[address] =

<> (shift)

[address] < [count]

[address] > [count]

Address

address

Return (next line)

RETURN

&

[address] & [options] [count] repeat substitute

~

[address]~[count] Like &, but with last used regular expression; for details, see Chapter 6 of Learning the vi Editor

vi Options

Option

Default

autoindent (ai)

noai

autoprint (ap)

ap

autowrite (aw)

noaw

beautify (bf)

nobf

directory (dir)

/tmp

edcompatible

noedcompatible

errorbells (eb)

errorbells

exrc (ex)

noexrc

hardtabs (ht)

8

ignorecase (ic)

noic

lisp

nolisp

list

nolist

magic

magic

mesg

mesg

novice

nonovice

number (nu)

nonu

open

open

optimize (opt)

noopt

paragraphs (para)

IPLPPPQP LIpplpipbp

prompt

prompt

readonly (ro)

noro

redraw (re)

remap

remap

report

5

scroll

half window

sections (sect)

SHNHH HU

shell (sh)

/bin/sh

shiftwidth (sw)

8

showmatch (sm)

nosm

showmode

noshowmode

slowopen (slow)

tabstop (ts)

8

taglength (tl)

0

tags

tags /usr/lib/tags

tagstack

tagstack

term

(from $TERM)

terse

noterse

timeout (to)

timeout

ttytype

(from $TERM)

warn

warn

window (w)

wrapscan (ws)

ws

wrapmargin (wm)

0

writeany (wa)

nowa

Enhanced Tags and Tag Stacks

The “Exuberant ctags” program was written by Darren Hiebert (home page: http://home.hiwaay.net/~darren/ctags/). As of this writing, the current version is 2.0.3.

This enhanced tags file format has three tab-separated fields: the tag name (typically an identifier), the source file containing the tag, and where to find the identifier. Extended attributes are placed after a separating ;". Each attribute is separated from the next by a tab character and consists of two colon-separated subfields. The first subfield is a keyword describing the attribute; the second is the actual value.

Keyword

Meaning

kind

The value is a single letter that indicates the lexical type of the tag

file

For static tags, i.e., local to the file

function

For local tags

struct

For fields in a struct

enum

For values in an enum data type

class

For C++ member functions and variables

scope

Intended mostly for C++ class member functions

arity

For functions

If the field doesn't contain a colon, it's assumed to be of type kind.

Within the value part of each attribute, the backslash, tab, carriage return, and newline characters should be encoded as \\, \t, \r, and \n, respectively.

Command

Function

ta[g][!] tagstring

Edit the file containing tagstring as defined in the tags file

po[p][!]

Pop the tag stack by one element

Command

Function

^]

Look up the location of the identifier under the cursor in the tags file and move to that location; if tag stacking is enabled, the current location is automatically pushed onto the tag stack

^T

Return to the previous location in the tag stack, i.e., pop off one element

Option

Function

taglength, tl

Controls the number of significant characters in a tag that is to be looked up; the default value of zero indicates that all characters are significant

tags, tagpath

The value is a list of filenames in which to look for tags; the default value is "tags /usr/lib/tags"

tagstack

When set to true, vi stacks each location on the tag stack

The ^W command cycles between windows, top to bottom. The :q and ZZ commands exit the current window.

You may have multiple windows open in the same file. Changes made in one window are reflected in the other.

You use :set extended to enable extended regular expression matching:

|
Indicates alternation. The left and right sides don't need to be single characters.
(…)
Used for grouping, to allow the application of additional regular expression operators.
+
Matches one or more of the preceding regular expressions. This is either a single character or a group of characters enclosed in parentheses.
?
Matches zero or one occurrence of the preceding regular expression.
{…}
Defines an interval expression. Interval expressions describe counted numbers of repetitions. In the following description, n and m represent integer constants:
{n}
Matches exactly n repetitions of the previous regular expression.
{n,}
Matches n or more repetitions of the previous regular expression.
{n,m}
Matches n to m repetitions.

When extended isn't set, use \{ and \}.

When extended is set, you should precede the above metacharacters with a backslash in order to match them literally.

Command

Function

sp[lit] [file]

Create a new window; load it with file if supplied; otherwise, the new window shows the current file

new

Create a new empty buffer and then create a new window to show that buffer

sne[w]

sn[ext] [file…]

Create a new window, showing the next file in the argument list

sN[ext]

Create a new window, showing the previous file in the argument list

sre[wind][!]

Create a new window, showing the first file in the argument list; reset the “current” file as the first with respect to the :next command

sl[ast]

Create a new window, showing the last file in the argument list

sta[g][!] tag

Create a new window showing the file where the requested tag is found

sa[ll]

Create a new window for any files named in the argument list that don’t already have a window

wi[ndow] [target]

With no target, list all windows; the possible values for target are described in the following table

close

Close the current window; the buffer that the window was displaying remains intact

wquit

Write the buffer back to the file and close the window; the file is saved whether or not it has been modified

qall

Issue a :q command for each window; buffers without windows are not affected

Command

Function

^W c

Hide the buffer and close the window

^W d

Toggle the display mode between “normal” and the buffer’s usual display mode; this is a per-window option

^W j

Move down to the next window

^W k

Move up to the previous window

^W n

Create a new window and a new buffer to be displayed in the window

^W q

Save the buffer and close the window

^W s

Split the current window

^W S

Toggle the wrap option; this option controls whether long lines wrap or whether the whole screen scrolls to the right, and is a per-window option

^W]

Create a new window, then look up the tag underneath the cursor

[count] ^W ^W

Move to next window, or to the countth window

^W +

Increase the size of the current window (termcap interface only)

^W -

Reduce the size of the current window (termcap interface only)

^W \

Make the current window as large as possible (termcap interface only)

Option

Default

autoiconify (aic)

noautoiconify

backup (bk)

nobackup

binary (bin)

(Set automatically)

boldfont (xfb)

bufdisplay (bd)

normal

ccprg (cp)

cc ($1?$1:$2)

commentfont (cfont)

directory (dir)

display (mode)

normal

elvispath (epath)

(System dependent)

focusnew (fn)

focusnew

functionfont (ffont)

gdefault (gd)

nogdefault

home (home)

$HOME

italicfont (xfi)

keywordfont (kfont)

lpcolumns (lpcols)

80

lpcrlf (lpc)

nolpcrlf

lpformfeed (lpff)

nolpformfeed

lplines (lprows)

60

lppaper (lpp)

letter

lpout (lpo)

lptype (lpt)

dumb

lpwrap (lpw)

lpwrap

makeprg (mp)

make $1

normalfont (xfn)

otherfont (ofont)

prepfont (pfont)

ruler (ru)

noruler

safer (trapunsafe)

nosafer

showmarkups (smu)

noshowmarkups

sidescroll (ss)

0

stringfont (sfont)

taglength (tl)

0

tags (tagpath)

tags

tagstack (tsk)

tagstack

undolevels (ul)

0

variablefont (vfont)

warpback (wb)

nowarpback

warpto (wt)

don’t

–c command
Execute command at startup. (POSIX version of the historic +command)
–R
Start in read-only mode, setting the readonly option.
–s
Enter batch (script) mode. This is only for ex and intended for running editing scripts (POSIX version of the historic “–” argument).
–b
Start in binary mode.
–f
For the GUI version, stay in the foreground.
–g
Start the GUI version of vim, if it has been compiled in.
–o [N]
Open N windows, if given; otherwise open one window per file.
–i viminfo
Read the given viminfo file for initialization, instead of the default viminfo file.
–n
Don't create a swap file: recovery won't be possible.
–q filename
Treat filename as the “quick fix” file.
–u vimrc
Read the given .vimrc file for initialization and skip all other normal initialization steps.
–U gvimrc
Read the given .gvimrc file for GUI initialization and skip all other normal GUI initialization steps.
–Z
Enter restricted mode (same as having a leading r in the name).

Command

Function

[N]sp[lit] [position] [file]

Split the current window in half

[N]new [position] [file]

Create a new window, editing an empty buffer

[N]sv[iew] [position] [file]

Same as :split, but set the readonly option for the buffer

q[uit][!]

Quit the current window (exit if given in the last window)

clo[se][!]

Close the current window; behavior affected by the hidden option

hid[e]

Close the current window, if it's not the last one on the screen

on[ly]

Make this window the only one on the screen

res[ize] [±n]

Increase or decrease the current window height by n

res[ize] [n]

Set the current window height to n if supplied, otherwise, set it to the largest size possible without hiding the other windows

qa[ll][!]

Exit vim

wqa[ll][!]

Write all changed buffers and exit

xa[ll][!]

wa[ll][!]

Write all modified buffers that have filenames

[N]sn[ext]

Split the window and move to the next file in the argument list, or to the Nth file if a count is supplied

sta[g] [tagname]

Split the window and run the :tag command as appropriate in the new window

Command

Function

^W s

Same as :split without a file argument; ^W ^S may not work on all terminals

^W S

^W ^S

^W n

Same as :new without a file argument

^W ^N

^W ^

Perform :split #, split the window, and edit the alternate file

^W ^^

^W q

Same as the :quit command; ^W ^Q may not work on all terminals

^W ^Q
^W c

Same as the :close command

^W o

Like the :only command

^W ^O

^W <DOWN>

Move cursor to nth window below the current one

^W j

^W ^J

^W <UP>

Move cursor to nth window above the current one

^W k

^W ^K

^W w

With count, go to nth window; otherwise, move to the window below the current one; if in the bottom window, move to the top one

^W ^W
^W W

With count, go to nth window; otherwise, move to window above the current one; if in the top window, move to the bottom one

^W t

Move the cursor to the top window

^W ^T

^W b

Move the cursor to the bottom window

^W ^B

^W p

Go to the most recently accessed (previous) window

^W ^P

^W r

Rotate all the windows downwards; the cursor stays in the same window

^W ^R
^W R

Rotate all the windows upwards; the cursor stays in the same window

^W x

Without count, exchange the current window with the next one; if there is no next window, exchange with the previous window. With count, exchange the current window with the nth window (first window is 1; the cursor is put in the other window)

^W ^X
^W =

Make all windows the same height.

^W -

Decrease current window height

^W +

Increase current window height

^W _

Set the current window size to the value given in a preceding count

^W ^_
zNRETURN

Set the current window height to N

^W]

Split the current window; in the new upper window, use the identifier under the cursor as a tag and go to it

^W ^]

^W f

Split the current window and edit the filename under the cursor in the new window

^W ^F

^W i

Open a new window; move the cursor to the first line that matches the keyword under the cursor

^W ^I

^W d

Open a new window, with the cursor on the first macro definition line that contains the keyword under the cursor

^W ^D
\|
Indicates alternation.
\+
Matches one or more of the preceding regular expressions.
\=
Matches zero or one of the preceding regular expression.
\{n,m}
Matches n to m of the preceding regular expression, as much as possible. n and m are numbers between 0 and 32,000; vim only requires the left brace to be preceded by a backslash, but not the right brace.
\{n}
Matches n of the preceding regular expression.
\{n,}
Matches at least n of the preceding regular expression, as much as possible.
\{,m}
Matches 0 to m of the preceding regular expression, as much as possible.
\{}
Matches 0 or more of the preceding regular expressions, as much as possible (same as *).
\{-n,m}
Matches n to m of the preceding regular expression, as few as possible.
\{-n}
Matches n of the preceding regular expression.
\{-n,}
Matches at least n of the preceding regular expression, as few as possible.
\{-,m}
Matches 0 to m of the preceding regular expression, as few as possible.
\i
Matches any identifier character, as defined by the isident option.
\I
Like \i, excluding digits.
\k
Matches any keyword character, as defined by the iskeyword option.
\K
Like \k, excluding digits.
\f
Matches any filename character, as defined by the is-fname option.
\F
Like \f, excluding digits.
\p
Matches any printable character, as defined by the isprint option.
\P
Like \p, excluding digits.
\s
Matches a whitespace character (exactly space or tab).
\S
Matches anything that isn’t a space or a tab.
\b
Backspace.
\e
Escape.
\r
Carriage return.
\t
Tab.
\n
Reserved for future use.
~
Matches the last given substitute (i.e., replacement) string.
\(…\)
Provides grouping for *, \+, and \=, as well as making matched subtexts available in the replacement part of a substitute command (\1, \2, etc.).
\1
Matches the same string that was matched by the first subexpression in \(and \). \2, \3 and so on may be used to represent the second, third, and so forth subexpressions.

The isident, iskeyword, isfname, and isprint options define the characters that appear in identifiers, keywords, and filenames, and that are printable, respectively.

If vim is in vi compatibility mode, ESC acts likes RETURN and executes the command. When vi compatibility is turned off, ESC exits the command line without executing anything.

The wildchar option contains the character you type when you want vim to do a completion. The default value is the tab character. You can use completion for the following:

Command names
Available at the start of the command line
Tag values
After you’ve typed :tag
Filenames
When typing a command that takes a filename argument (see :help suffixes for details)
Option values
When entering a :set command, for both option names and their values

Command

Function

ta[g][!] [tagstring]

Edit the file containing tagstring as defined in the tags file

[count]ta[g][!]

Jump to the countth newer entry in the tag stack

[count]po[p][!]

Pop a cursor position off the stack, restoring the cursor to its previous position

tags

Display the contents of the tag stack

ts[elect][!] [tagstring]

List the tags that match tagstring, using the information in the tags file(s)

sts[elect][!] [tagstring]

Like :tselect, but splits the window for the selected tag

[count]tn[ext][!]

Jump to the countth next matching tag (default 1)

[count]tp[revious][!]

Jump to the countth previous matching tag (default 1)

[count]tN[ext][!]

[count]tr[ewind][!]

Jump to the first matching tag; with count, jump to the countth matching tag

tl[ast][!]

Jump to the last matching tag

Command

Function

mak[e] [arguments]

Run make, based on the settings of several options as described in the next table, then go to the location of the first error

cf[ile][!] [errorfile]

Read the error file and jump to the first error

cl[ist][!]

List the errors that include a filename

[count]cn[ext][!]

Display the countth next error that includes a filename

[count]cN[ext][!]

Display the countth previous error that includes a filename

[count]cp[revious][!]

clast[!] [n]

Display error n if supplied; otherwise, display the last error

crewind[!] [n]

Display error n if supplied

cc[!] [n]

Displays error n if supplied, otherwise redisplays the current error

cq[uit]

Quit with an error code, so that the compiler won't compile the same file again; intended primarily for the Amiga compiler

Option

Function

autoindent

Simple-minded indentation; uses that of the previous line

smartindent

Similar to autoindent, but knows a little about C syntax; deprecated in favor of cindent

cindent

Enables automatic indenting for C programs and is quite smart; C formatting is affected by the rest of the options in this table

cinkeys

Input keys that trigger indentation options

cinoptions

Tailor your preferred indentation style

cinwords

Keywords that start an extra indentation on the following line

formatoptions

A number of single-letter flags that control several behaviors, notably how comments are formatted as you type them

comments

Describes different formatting options for different kinds of comments, both those with starting and ending delimiters, as in C, and those that start with a single symbol and go to the end of the line, such as in a Makefile or shell program

Command

Function

[i

Display the first line that contains the keyword under the cursor

]i

Display the first line that contains the keyword under the cursor, but starts the search at the current position in the file; this command is most effective when given a count

[I

Display all lines that contain the keyword under the cursor; filenames and line numbers are displayed

]I

Display all lines that contain the keyword under the cursor, but start from the current position in the file

[^I

Jump to the first occurrence of the keyword under the cursor

] ^I

Jump to the first occurrence of the keyword under the cursor, but start the search from the current position

^W i

Open a new window showing the location of the first (or countth) occurrence of the identifier under the cursor

^W ^I

[d

Display the first macro definition for the identifier under the cursor

]d

Display the first macro definition for the identifier under the cursor, but start the search from the current position

[D

Display all macro definitions for the identifier under the cursor; filenames and line numbers are displayed

]D

Display all macro definitions for the identifier under the cursor, but start the search from the current positon

[^D

Jump to the first macro definition for the identifier under the cursor

] ^D

Jump to the first macro definition for the identifier under the cursor, but start the search from the current position

^W d

Open a new window showing the location of the first (or countth) macro definition of the identifier under the cursor

^W ^D

Command

Function

[range]is[earch][!] [count] [/]pattern[/]

Like [i and]i but searches in range lines (the default is the whole file). Without the slashes, a word search is done; with slashes, a regular expression search is done

[range]il[ist][!] [/]pattern[/]

Like [I and]I but searches in range lines; the default is the whole file

[range]ij[ump][!] [count] [/]pattern[/]

Like [^I and] ^I but searches in range lines; the default is the whole file

[range]isp[lit][!] [count] [/]pattern[/]

Like ^W i and ^W ^I but searches in range lines; the default is the whole file

[range]ds[earch][!] [count] [/]pattern[/]

Like [d and]d but searches in range lines; the default is the whole file

[range]dl[ist][!] [/]pattern[/]

Like [D and]D but searches in range lines; the default is the whole file

[range]dj[ump][!] [count] [/]pattern[/]

Like [^D and] ^D but searches in range lines. The default is the whole file.

[range]dsp[lit][!] [count] [/]pattern[/]

Like ^W d and ^W ^D but searches in range lines; the default is the whole file

che[ckpath][!]

List all the included files that couldn't be found; with the !, list all the included files

Option

Default

background (bg)

dark or light

backspace (bs)

0

backup (bk)

nobackup

backupdir (bdir)

.,~/tmp/,~/

backupext (bex)

~

binary (bin)

nobinary

cindent (cin)

nocindent

cinkeys (cink)

0{,0},:,0#,!^F,o,O,e

cinoptions (cino)

cinwords (cinw)

if,else,while,do,for,switch

comments (com)

compatible (cp)

cp, nocp when a .vimrc file is found

cpoptions (cpo)

aABceFs

define (def)

^#\s*define

directory (dir)

.,~/tmp,/tmp

equalprg (ep)

errorfile (ef)

errors.err

errorformat (efm)

(Too long to print)

expandtab (et)

noexpandtab

fileformat (ff)

unix

fileformats (ffs)

dos,unix

formatoptions (fo)

vim default: tcq; vi default: vt

gdefault (gd)

nogdefault

guifont (gfn)

hidden (hid)

nohidden

hlsearch (hls)

nohlsearch

history (hi)

vim default: 20; vi default: 0

icon

noicon

iconstring

include (inc)

^#\s*include

incsearch (is)

noincsearch

isfname (isf)

@,48-57,/,.,-,_,+,,,$,:,~

isident (isi)

@,48-57,_,192-255

iskeyword (isk)

@,48-57,_,192-255

isprint (isp)

@,161-255

makeef (mef)

/tmp/vim##.err

makeprg (mp)

make

mouse

mousehide (mh)

nomousehide

paste

nopaste

ruler (ru)

noruler

secure

nosecure

shellpipe (sp)

shellredir (srr)

showmode (smd)

vim default: smd; vi default: nosmd

sidescroll (ss)

0

smartcase (scs)

nosmartcase

suffixes

*.bak,~,.o,.h,.info,.swp

taglength (tl)

0

tagrelative (tr)

vim default: tr; vi default: notr

tags (tag)

./tags,tags

tildeop (top)

notildeop

undolevels (ul)

1000

viminfo (vi)

writebackup (wb)

writebackup

Command

Key Sequence(s)

Function

delete-other-windows

^O, ^X 1

Eliminate all windows except the current one

delete-window

^K, ^X 0

Destroy the current window, unless it's the last one

edit-file, E, e ^X e

Bring given (or under-cursor, for ^X e) file or existing buffer into window

find-file

grow-window

V

Increase the size of the current window by count

move-next-window-down

^A ^E

Move next window down (or buffer up) by count lines

move-next-window-up

^A ^Y

Move next window up (or buffer down) by count lines

move-window-left

^X ^L

Scroll window to left by count columns, half screen if count unspecified

move-window-right

^X ^R

Scroll window to right by count columns, half screen if count unspecified

next-window

^X o

Move to the next window

position- window

z where

Reframe with cursor specified by where, as follows: center (., M, m), top (RETURN, H, t), or bottom (-, L, b)

previous- window

^X O

Move to the previous window

resize-window

Change the current window to count lines

restore- window

Return to window saved with save-window

save-window

Mark a window for later return with restore-window

scroll-next-window-down

^A ^D

Move next window down by count half screens

scroll-next-window-up

^A ^U

Move next window up by count half screens

shrink-window

v

Decrease the size of the current window by count lines

split- current- window

^X 2

Split the window in half; a count of 1 or 2 chooses which becomes current

view-file

Bring given file or existing buffer into window; mark it “view-only”

historical-buffer

_

Display a list of the first nine buffers; a digit moves to the given buffer, __ moves to the most recently edited file

toggle-buffer-list

*

Pop up/down a window showing all the vile buffers

\|
Indicates alternation.
\+
Matches one or more of the preceding regular expressions.
\?
Matches zero or one of the preceding regular expression.
\(…\)
Provides grouping for *, \+, and \?, as well as making matched subtexts available in the replacement part of a substitute command.
\s \S
Matches whitespace and nonwhitespace characters, respectively.
\w \W
Matches “word-constituent” characters (alphanumerics and the underscore, ‘_’) and nonword-constituent characters, respectively.
\d \D
Matches digits and nondigits, respectively.
\p \P
Matches printable and nonprintable characters, respectively. Whitespace is considered to be printable.

vile allows the escape sequences \b, \f, \r, \t, and \n, to appear in the replacement part of a substitute command. They stand for backspace, formfeed, carriage return, tab, and newline, respectively. Also, from the vile documentation:

Note that vile mimics perl’s handling of \u\L\1\E instead of vi’s. Given :s/\(abc\)/\u\L\1\E/, vi will replace with abc whereas vile and perl will replace with Abc. This is somewhat more useful for capitalizing words.

vile stores all your ex commands in a buffer named [History]. Options control your access to it and the use of the minibuffer (the colon command line).

Option

Default

alt-tabpos

noatp

animated

animated

autobuffer (ab)

autobuffer

autosave (as)

noautosave

autosavecnt (ascnt)

256

backspacelimit (bl)

backspacelimit

backup-style

off

bcolor

check-modtime

nocheck-modtime

cmode

off

comment-prefix

^\s*\(\s*[#*>]\)\+

comments

^\s*/\?\(\s*[#*>]\)\+/\?\s*$

dirc

nodirc

dos

nodos

fcolor

fence-begin

/*

fence-end

*/

fence-if

^\s*#\s*if

fence-elif

^\s*#\s*elif\>

fence-else

^\s*#\s*else\>

fence-fi

^\s*#\s*endif\>

fence-pairs

{}()[]

glob

!echo %s

history (hi)

history

horizscroll (hs)

horizscroll

linewrap (lw)

nolinewrap

maplonger

nomaplonger

meta-insert-bindings (mib)

nomib

mini-edit

^G

mini-hilite (mh)

reverse

popup-choices (pc)

delayed

preamble (pre)

resolve-links

noresolve-links

ruler

noruler

showmode (smd)

noshowmode

sideways

0

suffixes (suf)

tabinsert (ti)

tabinsert

tagignorecase (tc)

notagignorecase

taglength (tl)

0

tagrelative (tr)

tagrelative

tags

tags

tagword (tw)

notagword

undolimit (ul)

10

unprintable-as-octal (uo)

nounprintable-as-octal

visual-matches

none

xterm-mouse

noxterm-mouse

Clone Source and Contact Information

Editor

nvi

Author

Keith Bostic

Email

bostic@bostic.com

Source

http://www.bostic.com/vi

Editor

elvis

Author

Steve Kirkendall

Email

kirkenda@cs.pdx.edu

Source

ftp://ftp.cs.pdx.edu/pub/elvis/README.html

Editor

vim

Author

Bram Moolenaar

Email

Bram@vim.org

Source

http://www.vim.org/

Editor

vile

Authors

Kevin Buettner, Tom Dickey, and Paul Fox

Email

vile-bugs@foxharp.boston.ma.us

Source

http://www.clark.net/pub/dickey/vile/vile.html

About the Author

Arnold Robbins, an Atlanta native, is a professional programmer and technical author. He has worked with Unix systems since 1980, when he was introduced to a PDP-11 running a version of Sixth Edition Unix. He has been a heavy AWK user since 1987, when he became involved with gawk, the GNU project's version of AWK. As a member of the POSIX 1003.2 balloting group, he helped shape the POSIX standard for AWK. He is currently the maintainer of gawk and its documentation. He is also coauthor of the sixth edition of O'Reilly's Learning the vi Editor. Since late 1997, he and his family have been living happily in Israel.

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Upgrade this ebook today for $4.99 at oreilly.com and get access to additional DRM-free formats, including PDF and EPUB, along with free lifetime updates.

vi Editor Pocket Reference